PHENO 2004

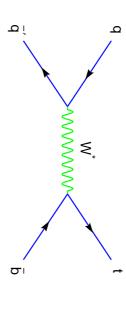
Madison Wisconsin, April 26, 2004

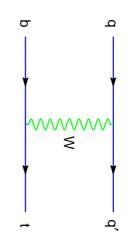
DØ single top searches in the μ +jets channel

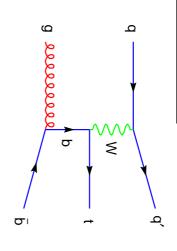
Summary

- Single top production at the Tevatron and properties
- Search strategy
- B-tagging:
- ➤ Soft Muon Tagger and Secondary Vertex Tagger
- ➤ Background estimation from MC and from data
- Systematic errors, events yields and plots of distributions
- \bullet Expected limits for 158 pb^{-1} of collected data

Arán García-Bellido on behalf of the DØ collaboration


Electroweak production of the top quark


<u>s-channel:</u> $p\bar{p} \rightarrow tb + X$ (tb, tb); and <u>t-channel:</u> $p\bar{p} \rightarrow tqb + X$ (tqb, $t\bar{q}b$, tq, $t\bar{q}$) Two completely independent processes through W-exchange:


NLO σ for $\sqrt{s}=1.96\,\mathrm{TeV}$ and $M_t=175\,\mathrm{GeV}/c^2$ (hep-ph/9604223, hep-ph/0207055)

$$\sigma_s = 0.88 \pm 0.07 \, pb$$

$$\sigma_t = 1.98 \pm 0.21 \, pb$$

Total production cross section $\sim 40\%$ of $t\bar{t}$, but...

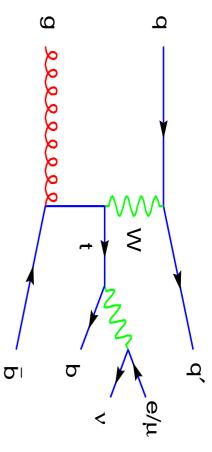
- Access to Wtb vertex \longrightarrow Measure V_{tb} directly, test unitarity of CKM
- Test V-A structure \longrightarrow New physics: W', top pions π^{\pm} , \tilde{t} , anomalous couplings?
- Study top polarization, mass

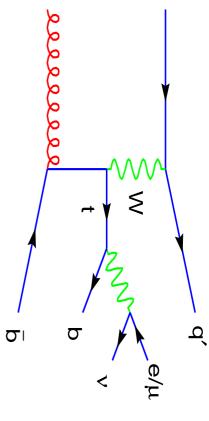
Run I 95% CL limits:

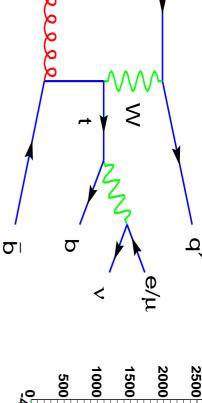
 $\sigma_s < 17 pb (D\emptyset) ; 18 pb (CDF)$

 $\sigma_t < 22 \, pb \, (\mathrm{D} \varnothing) \; ; \; 13 \, \mathrm{pb} \, (\mathrm{CDF})$

With increased \mathcal{L} , increased production cross section (+30%), and b-tagging

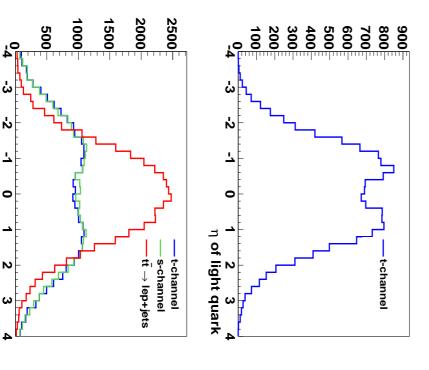

4


Flagship discovery in Run II


Signal topology

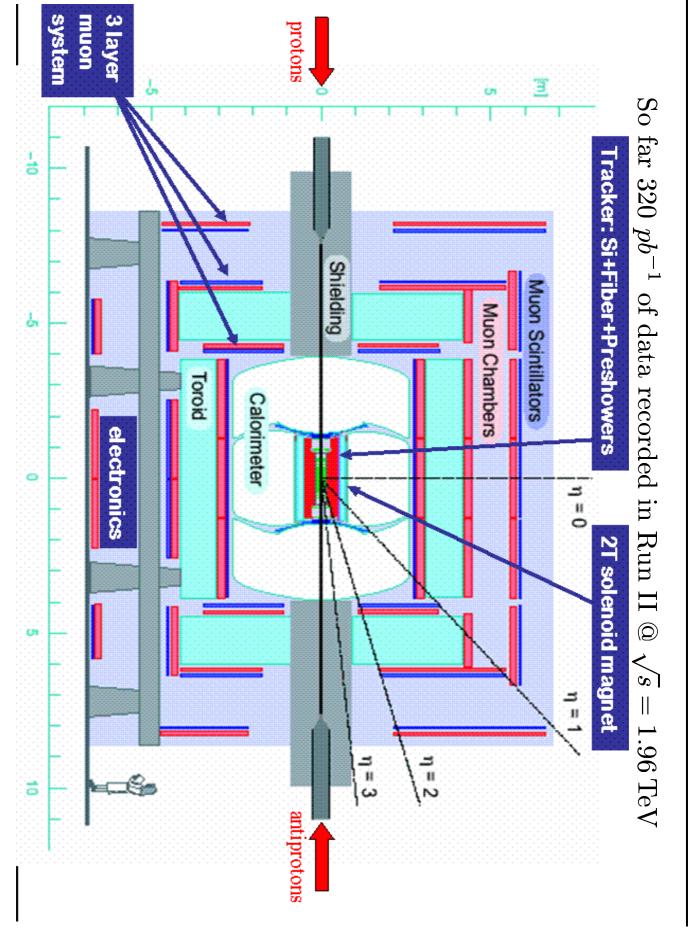
t-channel

s-channel


The signature we are looking for:

 η of lepton from W

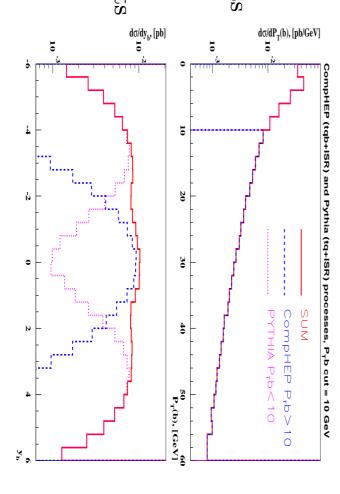
- One high- $p_{\rm T}$ isolated lepton (from W)
- $\not\!\!E_{\rm T} \ (\nu \ {\rm from} \ {\rm W})$
- One b-quark jet (from top)
- A light flavor jet and/or another b-jet


Main backgrounds:

- W+jets (from data)
- $t\bar{t} \to \ell + jets \text{ and } t\bar{t} \to \ell\ell$
- misreconstructed multi-jets events
- $Z{
 ightarrow}\mu\mu$ only for soft-muon tag analysis

η of top quark

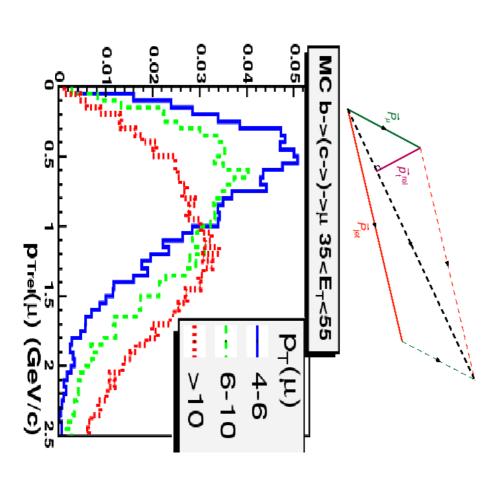
DØ single top μ +jets channel


Search cuts and MC samples

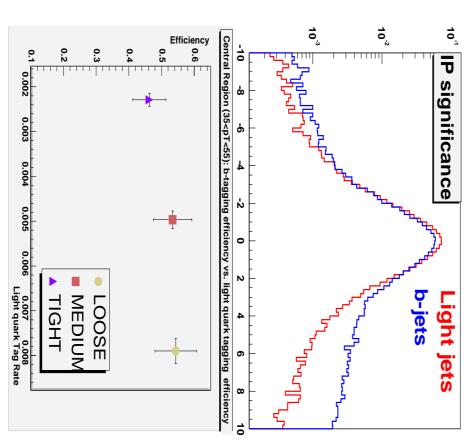
Reject mismeasured events and regions not well described by bkgd. models Loose preselection to keep data with similar final state objects to signals

- 1 good quality isolated muon: $E_{\rm T} > 15\,{\rm GeV}, \ |\eta| < 2$
- $2 \le N_{\rm good\ jets} \le 4$
- Leading jet: $E_{\rm T} > 25 \,{\rm GeV}, \ |\eta| < 2.5$; Other jets: $E_{\rm T} > 15 \,{\rm GeV}, \ |\eta| < 3.4$
- $E_{
 m T}^{JES} > 15 \,{
 m GeV}, \ E_{
 m T} > 15 \,{
 m GeV}$
- $N_{
 m noise\ jets} \le 2$, $E_{
 m T} < 200 \, {
 m GeV}$
- Require at least one b-tag by soft- μ tagger / secondary vertex tagger
- Final cut: $H_{\rm T} = E_{\rm T}^{\rm jet1} + E_{\rm T}^{\rm jet2} + E_{\rm T}^{\mu} + E_{\rm T} > 150 \,{\rm GeV}$

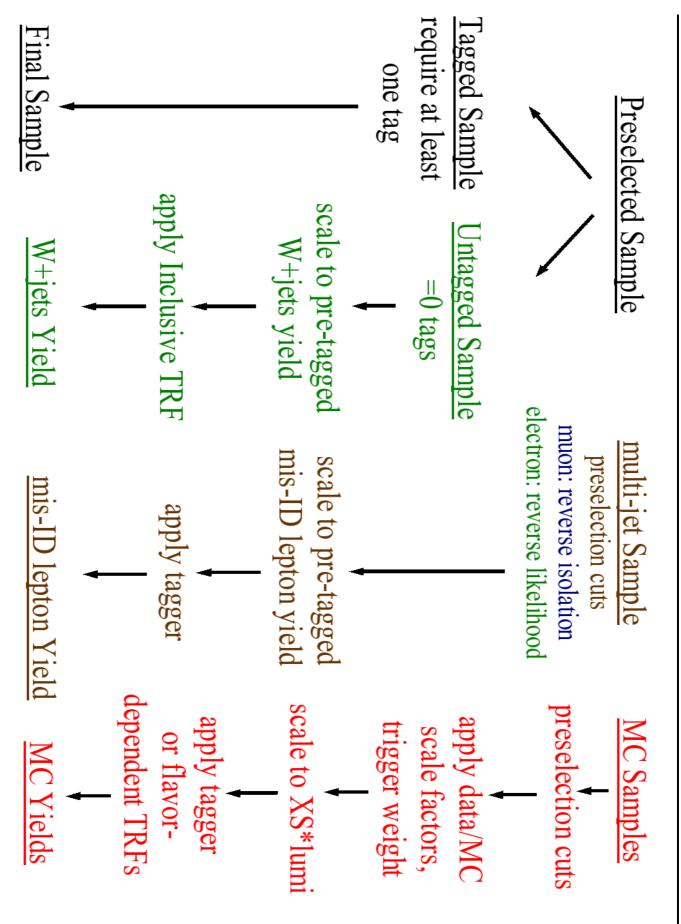
MC samples (all interfaced to Pythia):


- SingleTop for signal: based on CompHEP, no parton cuts
 NLO with full spin correlations
- Alpgen for $t\bar{t}$ full spin correlations, no parton cuts
- Pythia for $Z \rightarrow \mu\mu$ only for soft-muon tag analysis

Two different b-tagging algorithms used independently:


Soft Muon Tagger

- 11% of b-jets contain a soft muon
- Look for a muon close to a jet: $\Delta R(\mu, \text{jet}) \leq 0.5$ and $p_{\text{T}}(\mu) > 4 \, \text{GeV}/c$



Secondary Vertex Tagger

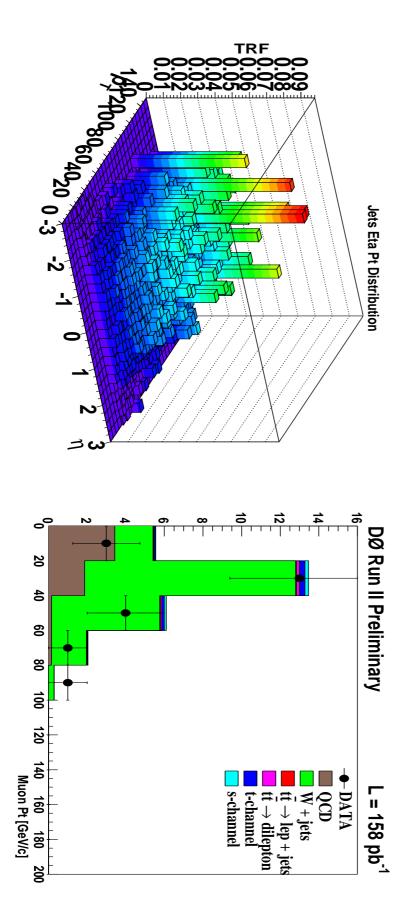
- Reconstruct a displaced vertex
- Fit tracks with $\mathrm{IP_{trk}}/\sigma_{\mathrm{trk}} > 3.5$
- Secondary vertex if $IP_{vtx}/\sigma_{vtx} \geq 7$

lagged background estimation methods

Tagged MC estimation methods

For signal, $t\bar{t}$ and $Z\rightarrow\mu\mu$ MC samples:

- \star Correct from ID efficiencies (measured in $Z \rightarrow \mu^+ \mu^-$ data and MC): ID, tracking, matching, isolation scale factor $= \varepsilon(data)/\varepsilon(MC) = 0.86 \pm 0.05$
- * Apply trigger response and scale to $\sigma \mathcal{L}$
- * SVT applies a flavor dependent tag-rate functions after parton matching
- <u>b-flavor TRF</u>: $f(E_{\rm T}, \eta)$ from μ +jets sample with $p_{\rm T}(\mu) > 8 \,{\rm GeV}/c$ Count number of muon-jets with vertex, correct with $p_{\rm T}^{\rm rel}$ templates
- <u>c-flavor TRF</u>: scale b-TRF by c/b-tagging ratio from MC
- light-quark TRF: Use negative side of IP significance

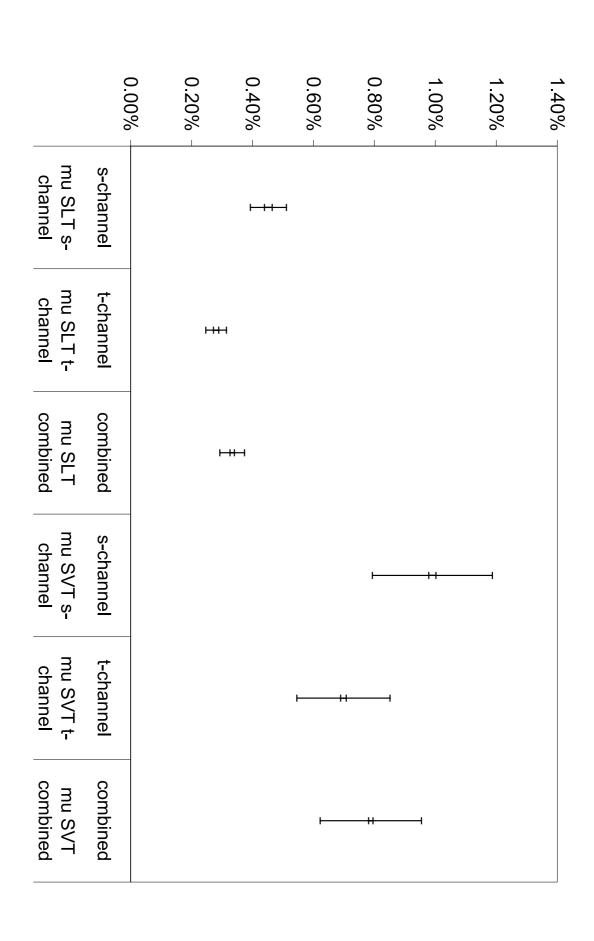

 \star SLT applies directly the tagger (find soft muon close to jet) on the MC

\mathbb{QCD} and $\mathbb{W}+\mathrm{jets}$ estimation from data

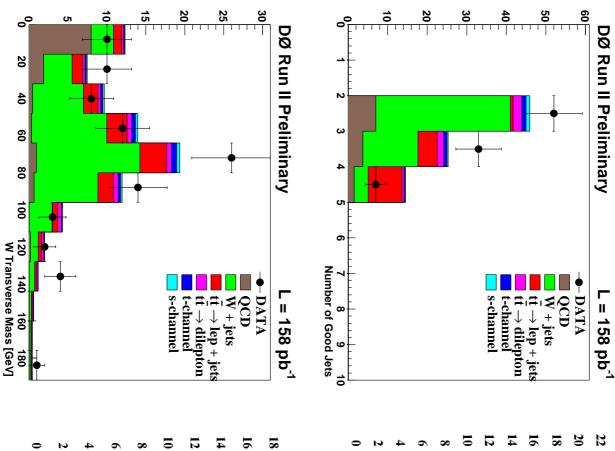
sample and apply the tagger QCD: Generate fake- ℓ sample with reverse isolation cut, scale it to size of pretagged

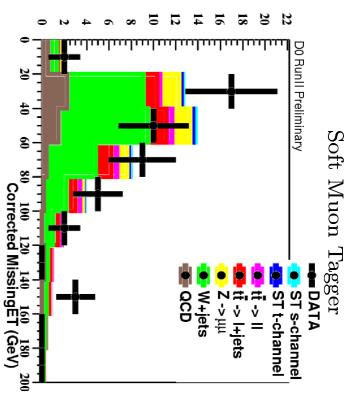
W+jets: Apply inclusive tag-rate function over the preselected sample with 0 tags

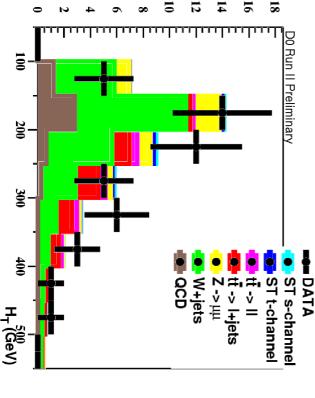
- Derive inclusive TRF from multijet sample \rightarrow Assume that heavy flavor content is the same in W+jets and the multijet sample for events with same jet multiplicity
- Test assumption with a clean W+jets sample: presel + $N_{\rm jets}$ =2 + $H_{\rm T}$ <200 GeV
- The tagger applied directly and the TRF agree within errors



Systematic Uncertainties


3	tagging μ veto (SVT)
T) 3	tagging μ model (SLT)
ن ت	jet fragmentation
6	μ ID
~ ∞	flavor dep. TRF
~10	trigger
~10	jet energy scale
rtainties (%)	MC acceptance uncertainties (%)


W+jets scale factor	QCD scale factor	$Z \rightarrow \mu\mu$ scale factor	inclusive TRF	Data uncertainties (%)
ယ	13	16	20	(%)


- \star Largest uncertainty comes from the heavy flavor composition of the multijet data used to determine the W+jets yield: inclusive TRF
- \star tt and single top production cross sections are ~15-18%
- **★** Luminosity uncertainty is 6.5%
- \star W+jets and fake- ℓ from QCD uncertainties are fully anti-correlated
- ➤ Total yield uncertainty for W+jets and fake-ℓ is 18%
- \star Total yield uncertainty for MC backgrounds is $\sim 25\%$

Limit setting: Expected limits

Used Modified Frequentist approach (CL_s method) from LEP

- \star Derive s- and t-channel limits by taking the other's contribution as background
- Systematic uncertainties are included as fully correlated or fully uncorrelated
- **★** Correlations between channels and background sources are treated properly e.g. the $\mathcal L$ uncertainty is fully correlated between samples (signal, $t ar t, \ldots$) and analyses (SLT, SVT)
- \star SVT and SLT analysis are orthogonal: SVT requires a veto on a soft-tagging μ
- * Easy combination of taggers and addition of channels

σ 95% CL Expected Upper Limits With Systematics

o channol	ر د	3 0	17
9-CHOHHICI	2	0	Ė
t-channel	40	34	25
s+t combined	32	27	22

Conclusions

With $158 pb^{-1}$ of data, w

WG BGG.	200.
119 ± 11	Observed Data
102 ± 10	Bkg. expected
5 ± 1	s+t

Muon channel **expected** limits with systematics taken into account:

$$\sigma_s < 17 \, pb$$

$$\sigma_t < 25\,pb$$

$$\sigma_{s+t} < 22 \, pb$$
 @ 95% CL

- Combine limits with the e-channel: see talk by R. Schwienhorst
- Already better results than in Run I ...
- ... and we haven't applied neural networks yet
- ... nor shape fitting to extract better limits
- The Tevatron and DØ are performing very well
- Many exciting new results to come from this analysis!